Hepatic Copper Storage Disorder in the Dalmatian

David C. Twedt DVM, DACVIM

Betty Garvin Memorial Lecture

Copper Is Essential For Life

- Energy production
- Nerve transmission
- Antioxidant function
- Iron metabolism

Copper Is Essential For Life

Normal Copper Metabolism

- Copper
- Ceruloplasmin

Copper accumulation
- 2nd Liver disease (cholestasis)
- Metabolic
- Dietary

Hepatic Copper Transport

- Ceruloplasmin
- Glutathione
- Metallothionein
- Superoxide dismutase
- Commd1
- Atox1
- Ctr1
- Ccs
Wilson disease: Copper Storage Disease in Humans

Cirrhosis of the Liver

Copper

Wilson disease: Copper Genetics in Humans

Professor emerita Diane Cox, at U Toronto

ATP7B gene discovered in 1993

Over 100 variants in the ATP7B gene in many discovered by Dr Cox while at U Alberta

Questions in human studies: how many of the genetic changes are ‘normal’ and how many cause disease?

Hepatic Copper Transport

So the Canine Copper Story Begins......

• 1975 Marianna Padula described liver problems in her Bedlington terriers

• 1976 Hardy reported in The Minnesota Vet abnormal copper in livers of several Bedlington terriers having liver disease

Copper Granules in liver Cells
Bedlington Terrier Copper Hepatotoxicity

- Copper increases with age of dog
- Successful treatment with chelation therapy
- Genetic defect identified (COMMD1)
- Genetic testing has almost eliminated the disease

Tweedt et al: JAVMA175;1979

Bedlington terrier Genetics

Breed Predispositions for Chronic Hepatitis and Copper

Bedlington terrier
Doberman pinscher
Labrador retriever
West Highland white terrier

Normal Copper 120-400 µg/g dw
Toxic Levels >1000 µg/g dw

Chronic Hepatitis in Labrador Retrievers

- Hepatitis associated with hepatic Cu
- ATP7B defect
 - Same gene as in humans
 - Males protected if they carry a mutation in ATP7A
- Penicillamine reduces Cu
- High dietary Cu associated with high hepatic Cu
- Low Cu diets prevent Cu accumulation

Twedt et al: JAVMA175;1979
Incidence of Abnormal Hepatic Copper in Dogs

- Reviewed CSU Diagnostic Laboratory records between 2010 – 2015 having both liver histology and liver copper quantitation (µg/g dry weight; N < 400)
- 2149 samples
- 1064 Cu < 400
- 1085 Cu > 400 (50.5%)

......Remembering the words of one of my mentors

- “.....they put too much copper in dog foods”
- Man hepatic Cu
 - Normal 50-75 µg/g
 - Wilsons Dz >400 µg/g
- Dogs hepatic Cu
 - Normal 200-400 µg/g
 - Normal in 1930’s 50-75 µg/g
- Could the advent of commercial dog food be the cause for this increase and are certain dogs unable to handle the copper in the diet?
Relevant Dog Food Characteristics

<table>
<thead>
<tr>
<th>Copper (mg/kg DM)</th>
<th>Average Dog Food</th>
<th>RC Hepatic Hills l/d</th>
<th>AAFCO min, max</th>
<th>NRC minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-25</td>
<td>5.2-4.8</td>
<td>7.3 min</td>
<td>250 max</td>
<td>6</td>
</tr>
</tbody>
</table>

- Feeding recommendations based on assumptions (puppies and pigs)
- In 1997 dietary copper supplement switched from Cu oxide to Cu chelates
- The average 10kg dog consumes twice the copper a day than a 70 kg person

Copper-associated liver disease in Dalmatians: a review of 10 dogs

Webb CG, Tweed DC, Meyer DJ.

- Average age 6 yrs.
- Range 2-10
- 4 males, 6 females
- One mother & son
- Gastrointestinal signs
 - Vomiting and anorexia
 - Lethargy
- Icteric membrane

Diagnosis

- Abnormal liver enzymes (ALT)
- Liver biopsy:
 - Surgery
 - Needle biopsy
 - Laparoscopy

Diagnosis

- Liver biopsy:
 - Histopathology
 - Special Cu stains
 - Cu quantitation
 - 5X5mm or > diameter tissue
 - Place in Cu free container
 - It is possible to measure Cu on paraffin embedded sample (after the fact)
Maybe a Clue to Copper Toxicity?

- Urine sample:
 - Some may have glycosuria
 - Sugar in the urine
 - Cu associated Fanconi syndrome?
 - Cu stain in kidney tubules
 - Resolves with therapy

Treatment

- Copper chelation
- Penicillamine
- Others?
- Zinc (too slow acting)
- Low copper diet
- Antioxidants

Penicillamine (10-15 mg/kg q12 h)
- Use compounded formulations
- Give on empty stomach
- May cause vomiting in some
- Treat until ALT is normal
- Re-biopsy is ideal

Low copper diets
- RC Hepatic™
- Hills l/d™
- Homemade diets
 - BalanceIT.com
 - Vitamin supplements low in Cu

Understanding the Genetics of Hepatic Copper Toxicosis in the Dalmatian
Principal Investigator: Andrew Lawrence Mason, PhD, University of Alberta
Total Grant Amount: $100,000
Grant Period: 3/1/2017 - 3/26/2019

Funding for the research is provided through the efforts and generosity of the Dalmatian Club of America and Dalmatian Club of America Foundation. The AKC Canine Health Foundation supports the funding of this effort and will oversee administration of funds and scientific progress reports.
Copper Storage Disease in the Dalmatian: Our Study

- Dog has 39 pairs of chromosomes
- 19,000 protein coding genes

Phase I – Preliminary results:
- Most likely an autosomal recessive defect due to an abnormal gene involved in Cu metabolism

Copper Storage Disease in the Dalmatian: Our Study

- Phase I – collect and evaluate data
- CSD Study Group provided information
- Owners and breeders
- Liver samples and DNA to CSU
- Orthopedic Foundation for Animals (OFA) database for pedigree information/DNA bank
- 163 dogs on the pedigree below
- 22 biopsy confirmed dogs (19 affected, 1 carrier)
So what does this mean..........

- Both carriers

- One normal, one carrier

Copper Storage Disease in the Dalmatian: Our Study

- **Phase II** –
 - DNA whole genome sequencing from select dogs
 - Identify candidate genes leading to CSD in Dalmatians

- **Phase III**
 - Develop genetic tests for hepatic CSD
 - Use genetic tests to reduce breeding of affected dogs
 - Use genetic tests to develop targeted therapies
 - Once the Dalmatian genome is established can lead to future studies of other disorders

Many thanks to all of the Dalmatian owners and breeders who have contributed so far!

Continued need for information from owners and breeders if you have provided information and/or samples in the past – please get in touch, as we need your consent to use any information previously submitted to the CSDSG for this new study.

Georgina MacIntyre
S@ualberta.ca

David Tweedt
tweedt@colostate.edu